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THERMODYNAMIC DESCRIPTION OF THE BEHAVIOR

OF SHAPE MEMORY ALLOYS BY AN ADDITIVE GIBBS POTENTIAL

UDC 539.4A. A. Movchan1 and Nyunt Soe2

Conditions of satisfying the dissipative inequality are found for the case where the Gibbs potential
of a shape memory alloy (SMA) is assumed to be additive. The effective specific heat of the SMA
is obtained as a function of temperature, strain, and strain rate in direct and reverse thermoelastic
martensite transformations. A coupled one-dimensional problem of direct and reverse transforma-
tions in an SMA rod is solved.
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Mechanical phenomena typical of shape memory alloys (SMA) are described from the viewpoint of rational
thermodynamics in [1–3]. It is normally assumed that the thermodynamic potential of the SMA, which is a
two-phase medium, consists of two parts: additive and non-additive. It was assumed in various papers that the
non-additive part (the so-called energy of phase interaction, energy of mixing, etc.) possesses various properties
usually contradicting each other. In these works, the non-additive part is determined by formulas that have not
been adequately justified. In the present paper, we consider the possibility of a thermodynamic description of the
SMA behavior without non-additive parts in the Gibbs potential. Most papers dealing with the description of
the thermodynamic behavior of the SMA are based on these or those a priori hypotheses concerning the values of
dissipation or dissipation rates in these materials. The model proposed here does not use such hypotheses.

For an SMA consisting of austenite and martensite phases, the dissipative inequality has the form [2]
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Here D and ψ are the dissipation rate and Gibbs potential obtained from the expression for the free energy by the
Legendre transform with the use of thermoelastic strains εeT

ij , S is the entropy, T and ρ are the absolute temperature
and density, respectively, q is the volume fraction of the martensite phase, σij and εph

ij are the macroscopic stresses
and phase strains, respectively, and qi are the components of the heat-flux vector; the primed quantities are deviator
components; the subscript after the comma indicates the derivative with respect to the corresponding coordinate.

The Gibbs potential for the austenite–martensite medium is taken in the form ψ = qψ1 + (1 − q)ψ2, where
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are the Gibbs potentials for martensite (m = 1) and austenite (m = 2), Km and Gm are the tripled volume and
shear moduli, S0m and U0m are the densities of entropy and internal energy in an unloaded state at a reference
temperature T0, α is the coefficient of temperature expansion, and Cσ is the heat capacity at constant stresses. As
a result, we obtain an expression for ψ of the form (2), where the subscript m has to be omitted at all quantities:

S0 = S02 − q∆S0, U0 = U02 − q∆U0,
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∆S0 = S02 − S01 > 0, ∆U0 = U02 − U01 > 0.

Assuming that two first terms in the right side of Eq. (1) are equal to zero, we can obtain the constitutive
relations for entropy

S = ασkk/ρ+ Cσ ln (T/T0) + S0, (3)

and elastic and temperature-induced strains. Using the Fourier law for the heat-flux vector

qi = −kqT,i, (4)

where kq is the thermal conductivity assumed to be identical for the austenite and martensite phases, we can ensure
that the last term in the right side of Eq. (1) is non-negative. Hence, we obtain the following formulation of the
“mechanical” part of the dissipative inequality:
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(5)

Let the direct martensite transformation from the austenite state and the reverse transition occur in the
absence of macroscopic stresses. In such processes, the macroscopic phase deformations of the shape are zero [4],
and inequality (5) can be written as

∆S0(T ∗ − T )q̇ � 0, T ∗ = ∆U0/∆S0, (6)

where T ∗ is the temperature of thermodynamic equilibrium of the phases. According to Eq. (6), the direct trans-
formation (q̇ > 0 and Ṫ < 0) can occur only at temperatures below the thermodynamic equilibrium point, and the
reverse transformation (q̇ < 0 and Ṫ > 0) can occur only at temperatures above the thermal equilibrium temper-
ature. Therefore, the dissipative inequality is satisfied in thermoelastic martensite transformations in a state free
from macroscopic stresses if the following two-sided inequality holds:

M0
s � T ∗ � A0

s (7)

(M0
s and A0

s are the start temperatures of the direct and reverse martensite transformation of the unloaded material,
respectively).

In the direct and reverse transformations under the action of macroscopic stresses, the phase strain rate is
assumed to satisfy the constitutive relations

ε̇ph
ij = c0σ

′
ij q̇, ε̇ph

ij = εph0
ij q̇/q0, (8)

which are a particular case of more generic constitutive relations proposed in [5]. Here εph0
ij and q0 are the values

of εph
ij and q in the beginning of the reverse-transformation stage considered. Substituting Eq. (8) into Eq. (5), we

obtain
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Let the start temperatures Mσ
s and Aσ

s of the direct and reverse transformations in the presence of stresses
be determined by the formulas
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Taking into account Eq. (10) and the fact that T < Mσ
s in the direct transformation and T > Aσ

s in the
reverse transformation, we obtain the following relations from inequality (9):

2c1σ2
i /3 − ρ∆S0kσi + ρ(∆U0 −M0

s ∆S0) � 0, c1 = c0 + ∆G/(4G1G2); (11)

ρ(∆U0 −A0
s∆S0) � 0. (12)

Inequality (11) is valid for all non-negative values of σi if the first inequality in (7) holds and the transition entropy
∆S0 is bounded from above:

∆S0 � 4∆U0/(2M0
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√
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TABLE 1

Alloy M0
s ,

K
A0

s,
K

∆U0,
J/kg

∆S0,
J/(kg ·K)

T ∗,
K

k,
K/MPa

c0,
MPa−1

T ∗ − M0
s ,

K
∆Tmin,

K

TiNiCu 324 341 38 245 113.71 336.3 0.11 0.00032 12.3 10.5
Ti–48.7% Ni 338 360 35,931 102.50 350.5 0.10 0.00024 12.5 10.0
Ti–51.5% Ni 160 215 10,179 52.85 192.6 0.19 0.00028 33.0 18.0

Condition (13) can be written as

T ∗ −M0
s � ∆Tmin = (

√
(M0

s )2 + 3ρ∆U0k2/(2c1) −M0
s )/2. (14)

According to Eq. (14), the direct transformation of the unloaded material cannot begin merely when the decreasing
temperature reaches the temperature of thermodynamic equilibrium T ∗. Some “overcooling” should occur first;
the lower boundary of this overcooling is determined by the value of ∆Tmin increasing with increasing amount of
latent heat ∆U0. Inequality (12) holds if the second inequality in (7) is valid. Hence, in contrast to the direct
transformation, the condition of a non-negative dissipation rate in the reverse transformation of the loaded material
means that no “overheating” is needed for the reverse transformation in the unloaded material to begin. The reverse
transformation can start at the moment when the increasing temperature reaches the thermodynamic equilibrium
point T ∗.

The experimental data of [3] for three SMAs and the values of k, c0, T ∗ −M0
s , and ∆Tmin calculated on

the basis of these data are listed in Table 1. It follows from Table 1 that the conditions of dissipative inequalities
(7) and (14) are satisfied for all materials listed. Restriction (13) on the magnitude of the transition entropy is not
violated either.

According to (1) and the last formula in (5), we have

D1 = TρṠ + qi,i. (15)

Substituting expressions (4) and (5), and formula (3) differentiated in time into (15), we obtain

kq∆T = ρCσṪ + Tασ̇kk − σ′
ij ε̇

ph
ij − (ρ∆U0 + Z(σ))q̇. (16)

If the phase transitions occur in the absence of macroscopic stresses, it follows from Eq. (16) that

A(T ) =
Q̇

Ṫ
= Cσ − ∆U0

dq

dT
, (17)

where A(T ) is a function proportional to the function corresponding to the experimental dependence of the differ-
ential scanning calorimetry of SMA samples in phase transformations. Thus, within the framework of the model
with the additive Gibbs potential, there exists a certain dependence (17) between the shape of the curves of the
differential scanning calorimetry and the diagram of the transition in the absence of stresses, which allows obtaining
the transition diagram from experimental data.

In the presence of varying stresses, relation (16) with allowance for Eq. (8) can be written as

kq∆T = ρC∗Ṫ + ϕ(σ, σ̇, T ), C∗ = Cσ + χ(σ, T ), (18)

in the case of the direct transformation, we have
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Fig. 1. Temperature (a), phase-composition parameter (b) at the mid-point of the rod, and longi-
tudinal displacement of the non-fixed end of the rod (c) as functions of time in direct and reverse
transformations: the problem is solved with allowance for latent heat and dissipation (1), with
allowance for latent heat only (2), and with no allowance for latent heat and dissipation (3).

and in the case of the reverse transformation, we obtain

χ(σ, T ) =
σ′

ijε
ph0
ij /q0 + ρ∆U0 + Z(σ)

ρ(A0
f −A0

s)
f ′

( Aσ
f − T

A0
f −A0

s

)
,

ϕ(σ, σ̇, T ) = Tασ̇kk − χ(σ, T )
3∆S0

(3εph0
ij σ̇′

ij

q0
+
σ̇kkσmm∆K

K1K2
+
σ̇iσi∆G
G1G2

)
.

The function q = f(t) is the dependence of the phase-composition parameter on the reduced temperature t

[t = (M0
s − T )/(M0

s − M0
f ) in the direct transformation and t = (A0

f − T )/(A0
f − A0

s) in the reverse transfor-
mation]; f ′ = df/dt. If the phase transitions occur under the action of constant stresses, we have to use ϕ = 0 in
Eq. (18).

With the use of Eqs. (18) and (8), Hooke’s law for elastic strains, and linear expressions of strains via
displacements in direct and reverse transformations that occur under the action of constant stresses σ+ = σ−

= 400 MPa (uniaxial tension), a coupled one-dimensional problem of the strain, phase, and temperature state of
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an SMA rod of unit length with a constant section was solved; one end of the rod cannot move in the longitudinal
direction, and the other end experiences the action of a constant tensile load. The side surfaces of the rod are
free from stresses and are thermally insulated; heat transfer occurs at the end faces only. The initial temperature
is identical at all points of the rod [T (0, x) = 400 K] and exceeds the start temperature of the direct martensite
transformationMσ

s = 393 K. The end faces of the rod in the case of cooling and corresponding direct transformation
have a temperature constant in time and uniformly distributed over the surface of the end faces T (t, 0) = T (t, 1)
= 300 K; this temperature is lower than the finish temperature of the direct transformation Mσ

f = 373 K. When
the rod is heated, the temperature of the end faces increases in a jumplike manner to T (t, 0) = T (t, 1) = 450 K,
exceeding the finish temperature of the reverse transformation Aσ

f = 423 K. The direct transformation occurs up
to the time t1 = 5 · 104 sec. As the initial condition in the problem of the reverse transformation, we used the
temperature distribution obtained at t = t1 from the solution of the problem of the direct transformation. The
material constants were assumed to have the values c0 = 0.000 283 MPa−1 and k = 0.2 K/MPa. The solution was
obtained with the use of the piecewise-quadratic approximation of the transition diagram

f(t) =
{

2t2, 0 � t � 1/2,
1 − 2(t− 1)2, 1/2 � t � 1,

of the corresponding piecewise-linear approximation of the curve of differential scanning calorimetry, as it follows
from Eq. (17).

Figure 1 shows the time evolution of temperature, the phase-composition parameter at the mid-point of the
rod, and the dimensionless parameter v = E2u/(Lσ) of longitudinal displacement u = u(t, 1) of the non-fixed right
end face of the rod. It follows from Fig. 1 that the lack of allowance for latent heat leads to a significant change in
the problem solution. The neglect of dissipation can also give significant errors.

This work was supported by the Russian Foundation for Basic Research (Grant No. 05-01-00841).
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